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Groups of short waves within a narrow frequency band are known to be accompanied 
by second-order long waves travelling at the group velocity of the predominant short 
waves. When the short waves arc refracted by bottom topography, new long waves 
can be further radiated and propagated away from the topography at  the shallow- 
water speed. Since over a long submarine ridge there can be trapped modes of long- 
period waves, incident groups of short waves can excite the trapped waves through 
a second-order mechanism. In  this paper we study such excitations over a rectangular 
shelf which scatters the first-order short waves. By employing asymptotic methods 
we examine the transient excitation of the trapped long wave by both sinusoidal 
wave groups and wave packets. The effects of a small angular spread of the incident 
waves are also included. 

1. Introduction and formulation 
It is well known in the linearized theory of long water waves in shallow water that 

simple harmonic waves of certain frequencies can be trapped on a long shelf or on a 
ridge (Longuet-Higgins 1967). I n  the idealized case of an infinitely long ridge such 
waves cannot be excited linearly by simple harmonic waves approaching the ridge 
from outside; they can only be generated by local forcing such as overhead wind. 

For ridges of oceanographic interest, the trapped wavelength can be comparable 
with the width of the ridge. The corresponding periods are typically a few minutes, 
which are much longer than the typical wind-wave periods of O(10-20 s), but close 
to the modulational periods of swell groups. The goal of this paper is to show that 
narrow-banded wind waves incident from the sea can excite trapped long waves on 
a shelf t'hrough a nonlinear mechanism. Both steady and transient wave groups will 
be considered. 

Nonlinear interaction of waves with topography, with particular emphasis on 
wave trapping, has been studied by Foda & Mei (1981) and by Mei & Benmoussa 
(1984) for cases where the water depth changes slowly in space so that reflection of 
the short waves is negligible. In the present work we shall consider the case where 
reflection of the short waves is significant. Particular attention will be paid to 
transient resonance. For demonstration of the physics, we choose a relatively simple 
bathymetry of a rectangular shelf as shown in figure 1. Cartesian coordinates 
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(x, y, z )  are chosen so that the rest position of the free surface is the (x, y) plane 
with z positive upwards. The bathymetry is given by 

depth = h (1x1 > L, - a < y < a), 
depth = h' (1x1 < L, --GO < y < a), 

where h > h'. (1.2) 

Thus the ridge runs parallel to the y-axis. We assume that the water is of 
intermediate depth : ah = O( 1) ; ah' = O( 1)  where 

(1.3) = w2/g = Ic tanhkh. 

k is the central wavenumber and w is the central frequency of the short waves. The 
half-width of the ridge, L,  is assumed to be comparable with the length of the wave 
groups ; and very long compared with the short-wave length, i.e. 

kL = O(E-') 9 1, A k / k  = O(e) < 1. (1.3.) 

Only waves of small slope will be considered. To study the most interesting cases 
where nonlinearity and dispersion are comparable, we take the characteristic slope 
of the short waves ka to be O ( E )  also. 

The governing equations for the velocity potential are 

V2@ = @,, + QYv + QZz = 0 in the fluid, (1.5) 

where V, = (ax ,au) ,  and, 

QZ = 0, z = -h' (1x1 < L ) ,  

= -h (1x1 > L ) ,  
= 0 (x = +L,  -h < z < -Id). 

As in Agnon & Mei (1985) we introduce the slow coordinates 

(XI, y,, t l )  = e(x,  y, t )  
and the following expansion : 

where 

(1.10) 

(1.11) 
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In  this expansion GI1 represents the short-period waves at  the leading order, and 
@lo is the long-period wave potential. The perturbation equations governing Qnm can 
be straightforwardly deduced (Agnon & Mei 1985). and will be cited when needed. 

Our approach may be outlined as follows. At the leading order, the short waves are 
found by the solutions of a linear diffraction problem, which has been studied by 
Newman (1965), Miles (1967) and Mei & Black (1969). At the next order we examine 
separately the near field within a few swell lengths of the shelf edge, and the far field 
a few group lengths away from the edge. After first finding the forms of the potentials 
for the long waves in each field, we match their asymptotic values with the near fields 
to get the final result. As in Mei & Benmoussa (1984) who studied only a slowly 
varying topography, two types of long waves are shown to exist. The first one is 
locked to the short-wave groups and propagates a t  the group velocity. The other is 
a shallow-water wave generated a t  the shelf edges. For nearly normal incidence i t  
propagates both on the shelf and outwards in directions different from those of the 
short waves and of the locked long waves; the speed of propagation is the local 
velocity of long waves. Under certain conditions of oblique incidence, long waves of 
the second type can be trapped and resonated on the shelf. Responses to sinusoidally 
modulated and transient wave groups are analysed. The effects of a small directional 
spread are also included for generality. As a matter of notation, we denote the 
potential in the near field by $, i.e. 

45 = $, k(x+L) < O ( l ) ,  (1.12) 

and the potential in the far field by # :  

45 #, k(x,-Ll) = O(1) ;  k(xl+Ll) = O(1).  (1.13) 

For convenience we shall use L, = EL to denote the scaled half-width of the shelf 
when we refer to the x, coordinate. First, let us examine the first-order short-wave 
potentials in the near and far fields, $11 and, #ll. 

2. The potential for sinusoidally modulated short waves 
I n  the near field of each shelf edge, the equations for $11 are formally the same as 

the equations for the diffraction of regular waves by a rectangular step (Miles 1967). 
To account for diffraction by the whole shelf one must combine with the far field 

over the shelf. Two alternative approaches can be taken. On the one hand we may 
spectrally decompose the narrow-banded incident wave into a discrete set of 
sinusoidal components and superpose the respective solutions for the total diffraction 
field. Alternatively, short waves may be regarded as being sinusoidal with slowly 
varying envelopes. For sinusoidal modulation where the spectrum is composed of 
two frequencies, the first approach is simpler. 

Consider now a strictly sinusoidal wavetrain. In  view of the wide-shelf assumption 
(1.4) it is most convenient to employ an approximation due to Kewman (1965), by 
taking into account only the propagating modes for the interaction between the two 
edges, and ignoring the evanescent modes. Since the results are crucial to our later 
analysis, we sketch Newman’s reasoning below. Consider first the left edge x = - L 
of a step of infinite width. Let the potential of a wave incident from x - - 00 (from 
deep to  shallow water) have the amplitude A ,  i.e. 

=Af,,exp(iax+iyy) ( x <  - L ) ,  (2 . la )  

with a = k c o s O ;  y = k s i n O ;  (2.1 6 )  
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where 0 is the angle of incidence, and 

Y .  Agnon and C. C. Mei 

(2.1 c )  

the free-surface amplitude a of the incident wave is related to the potential 
amplitude A by 

2iw 

g 
a = - fo(0)A.  ( 2 . 2 )  

Then the propagating modes of the reflected and transmitted waves are given by 

$: = ARfo exp (-iax+iyy) (x < -L) ,  (2.3a) 

1G.E =AT& expfia’x-tiyy) (x > -L) ,  ( 2 . 3 b )  

respectively, with kr2 = d2+  y 2 ;  k‘ and& are related to h’ in the same way as k and 
f,, to h. The total propagating-wave potential is 

1 @ll = forx < -L ,  
forx > L. J $11 = $Tl 

R and T denote the reflection and transmission coefficients for a wave incident from 
the deep side x +  L - - 00 toward the step. The values of R and T can be determined 
numerically by the Galerkin method (Garrett 1971) or the closely related variational 
method (Miles 1967 or Mei & Black 1969). We then consider the right edge of the shelf 
and calculate the scattered wave due to an incident wave from the right (shallow 
side) toward a step of infinite width. The corresponding coefficients of reflection (to 
the right) and transmission (to the left) are denoted by R and T’ respectively. The 
numerical results have been checked against published theories as well as the exact 
law of energy conservation : 

( 1  - IRI’) C, cos 8 = ITI2 C; cos 0’, (2 .5)  
where tan8’ = y/a ’ .  

Now we make use of these coefficients R, T ,  R’ and T‘ for a step to a shelf of large 
but finite width. The short-wave potential in the far fields outside the shelf can be 
expressed as 

#11 ( A  eiaX+iYY + B e-iaz+iyy ) f o  (x< -h)7 (2.6a) 

# 11 - - (c eiax+iyy ) f o  (x > L ) ;  (2.6b) 

and on the shelf as 

) A  (1x1 < L) .  ( 2 . 6 ~ )  

Matching the propagating modes in (2.3) and (2.4) and making use of the reflection 
and transmission coefficients for each step, we immediately get 

# 11 - - (D eia’x+iyy + E e-ia’r+iyy 

and 
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FIGURE 2. The reflection coefficient IB/AI for a ridge versus kh’;h’/h = 0.5; L/h = 10; normal 
incidence (0 = 0). 

kh’ 

Solution of these simultaneous equations yields B ,  C, D, and E 

(2 .8 )  

This result is due to Newman (1965). 
Numerical values of IB/AI, are plotted vs. kh’ in figure 2 .  The variations of lC/Al, 

ID/Al and IE/AI are similar and are omitted. By considering all evanescent modes, 
accurate solutions for B-E can also be calculated by using a variational method (Mei 
& Black 1969). Numerical agreement with Newman’s wide-shelf approximation has 
been found to  be excellent for the parameters considered. Note that since kL is large, 
interference is strong and a small change in k results in a large change in B ,  C ,  D and 
E.  

Consider now an incident wave which is the sum of two monochromatic waves 
slightly detuned from the central frequency, 01 and y ,  i.e. 

(2.9 a,) 

where a* = a*€pft, y+ = yfsiQ, w* = w f e f t .  (2.9b) 

A+ and A- may be different in general. Equation (2 .9a)  can be alternatively written 
as 

>fo(z). (2.10a) 

with A = A+ e-iR(t,-ps,-w,) + A -  ei.Q(t,-p~l-w,)~ (2.10b) 

For strictly sinusoidal modulation A+ and ,4- are equal constants, in which case they 
will be taken to be related to the maximum free-surface amplitude a by ( 2 . 2 ) .  

e-iwt - - { A  ei(az+yy-wt) +:, 
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FIGURE 3. The wavenumber vectors k ,  k' and k- where k' = (a+,y+) and k- = (a-,y-).  

For the incident envelope we shall define C K  as its wavenumber vector and Be its 

V 
direction, with 

K = Q(p, v)/Cg, Be = tan-'-. (2.11) 
P 

These are depicted in figure 3. From the dispersion relation (1.3) one can show 
that 

The difference in angles of the two trains 

1 = C',(ap+yv)/k or52 = C g ~  cos(8-Be).  (2.12) 

(2.13) 

is the directional spread of the total incident wave. The range of 0,-0 is (-in, in). 
For B e - B  = k i n ,  there is no modulation in time. If the two uniform wavetrains in 
(2.9a) are collinear, Be = 0 and 

- r  - - (2.14) 
1' 

P a' 
and p and v are further related by 

1 = c,(,u2 + i.e. sz = C, K .  (2.15) 

the propagation speed of the incident envelope is in general 

Q 1 c, = - = G, cos (0-0,) = 
K (P2  + ,?)a. (2.16) 

When two uniform wavetrains are collinear, C, = C,. 

superposition we have the envelopes of the scattered waves : 
Now each wavetrain in (2.6a,  b )  can be represented in the form of (2.10). By 

{:] = {:I] exp [ -iQ(t, +-px,- vy,)] + exp [iQ(t, f p q -  qJ]. (2.17) {:I) 
On the shelf, the two refracted wavetrains must have the same y and v. The x- 
component is now +a' for the wave and +,u for the envelope. The component p' can 
be found from (2.12) : 

a 1 k' 
(2.18) 
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In  the limit of collinear waves (2.14) holds; (3.18) reduces to 

I d 2  EC 
Q$=- a’+, - 3 - 1  . “[ E a (k’Cg 11 (2.19) 

This formula applies also to a slowly varying bottom (Mei & Benmoussa 1984, 
equation (3.9) where Cro/Cgo should be corrected as Cgo/Co). Now the envelopes of the 
combined waves on the shelf are 

ThecoefficientsB*,Ci, D*,andE* arerelatedtoA*,R*,T*,R’*,T”,a*,anda’* 
just’ as B, C, D, and E are to A ,  R, T ,  R ,  T’, a and a’ in (2.8). Because (a+-a-)L 
is of order unity, the rapid oscillations in figure 3 imply that B+ and B-, etc. can differ 
significantly. 

We now turn to the long-wave potential. Unless otherwise stated the component 
wavetrains of the incident waves are not assumed to be collinear. 

3. Long-wave potential for incident short waves with a sinusoidal envelope 
3.1. The fur  jields 

Accounting for oblique incidence in accordance with (2 .2 ) ,  we can easily modify (4.7) 
in Agnon & Mei (1985) to get the governing equation for the long waves in water of 

$10,~,~-ghV?410 = - f : ( o ) ( k z - ~ 2 + g  1 (IPIz+IQlz)),,, lxll > L,, (3.1a)  
depth h : 

where V, = (a/ax,,a/ay,). Over the shelf, lrll < L,, a similar equation holds with h, 
I % ,  C, and f, replaced by h‘,Ic‘,CL and f a ,  respectively. P and Q are the potential 
amplitudes of waves propagating to the right and to the left respectively. 

c, 

Specifically 

(3 . lb )  

Note that only the self-interaction of each propagating wavetrain contributes to the 
long-wave potential $lo. Short waves propagating in opposite x-directions contribute 
only to short-scale oscillations and have zero mean. In  view of (2.10) and (2.12), 
lPI2 and I&Iz in (3.1) consist of zeroth and second harmonics in slow timescales. 
Specifically, corresponding to a typical right-going short wave in the deeper water we 
have 

+ 2  Re [A+&* e-2ia(tl-pz1-YY1)] = (A+I2+ IA-I2 +E. ( 3 . 2 ~ )  IAI2 = )A+I2 + 
The expression for C’ is similar. For the left-going short wave B, we have instead 

_j 

IBI2 = lB+I2 + IB-I2 + 2 Re [B+B-* e-zia(tl+flzl-vyl)] = IB+I + IB-12+ IB12. (3.2 b )  

For later convenience, we denote by IAp the oscillatory part of IAI2. By changing ,u 
to  p’, the corresponding relations for D and E can be written. Forced by these har- 
monics as in (3.1), must contain the same harmonics. Physically, the zeroth- 
harmonic part of $lo corresponds to steady set-up or set-down, while the second- 
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harmonic part is oscillatory. We shall only consider the more interesting second har- 
monic. The corresponding solution to  ( 3 . 1 )  is further split into two parts. One part 
is the inhomogeneous solution which is not required to satisfy any boundary 
conditions. It is easy to see that the inhomogeneous solution in two depths can be 
separated according to the wave-trains and propagate at the respective group 
velocities. For any envelope Z in deep water, the locked long wave is given by 

(3 .3 )  $it) = Re 3 ~ - ~ I ~ ( ~ I F / ~ X X - ~ Y I )  

where 

( 3 . 4 a )  

( 3 . 4 6 )  

is independent’ of 52. In  ( 3 . 3 ) ,  the minus sign in the exponent is associated with the 
right-going envelopes Z = ( A ,  C), and the plus sign with the left-going group Z = B .  
The long waves locked to the wave envelopes on the shelf, Z = (D,E), have 
expressions similar to ( 3 . 3 )  and ( 3 . 4 ) ,  where h, k ,  C, and p must be replaced by h’, k’, 
C; and p’ respectively. 

The remaining oscillatory part of $lo corresponds to solutions to the homogeneous 
equation ; 

(3.5) $:ot,t,-~W$:o = 0 (1x11 > L A \  

$ ~ t , t ,  -gh’ vq $FO = 0 (1x11 < LJ ; J 
hence they will be called the free long waves, denoted by the superscript F .  The sum 
of the inhomogeneous and homogeneous solutions must satisfy certain boundary 
conditions. In particular $To must be either outgoing or vanishing a t  lxll +a. The 
latter corresponds to  long waves trapped on the shelf. 

Because the potentials for the locked long waves are periodic in y,, the free waves 
must be likewise. We shall be mostly interested in trapped free waves and hence will 
denote the x1 (cross-shelf) wavenumbers of the free waves by 2is2p for (xl I > L, and 
252p’ for lxll < L, where /3 and p’ are different from p and p’ and must satisfy 

- p + J P  = (gh)-l, p ’ 2 + Y 2  = (gX)-l. (3 .6 )  

For trapping it is necessary that /3 and p’ be real so that 

(3 .7 )  

Now the free wave $Fo must be of the form 

(3 .8a)  

( 3 . 8 b )  

(3 .8  c )  

( 3 . 8 d )  

(3 .8e )  
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The total long-wave potential is obtained by adding the locked and the free long 
waves 

(3.9) i 410 = 4:o + 4;o + @a (XI < - L A  
410 = &a + 4;o + 9% + 4;o (1x11 < L A  
410 = 4Eb++:o (Zl > 4). 

The rays of these long waves are sketched in figure 4. The coefficients Y, 2, X ,  and 
2 will be determined by matching the total slow-wave potential in the near fields of 
the edges, to  which we must now turn. 

3.2. The 'near $fields 
In  the near field of an edge, the variation of $lo with respect to x, y and z is governed 
by the Laplace equation and zero normal-flux conditions on z = 0 and along the 
boundaries of the step. This has been shown formally by Agnon & Mei (1985, 
equations (4.1)) and is expected intuitively. Consequently, the slow potential $lo is 
independent of short scale (x,y,z) .  However, it  must depend on y1 owing to 
variations of the incident waves 

$10 = $ I O ( Y l ? t l ) ,  21 -L1 or+L,. (3.10) 

It should be stressed that while $lo does not depend on xl, there is still a second- 
order slow drift velocity in the x-direction. As in Agnon & Mei (1985, equation (4.22)) 
$20 is governed by 

W ' Z O  ( x  = -h,x < - L ) ,  
- 0  az ( z =  - h ' x >  -L) ,  

(3.11) 

(3.12) 

(3.13) 

(3.14) -- a$20 - 0 ( - h  < x < -h', x = -L) .  
ax 

The velocity U defined in (3.12) is just Stokes' drift. Integrating the normal 
derivative of $,, around the boundaries of the near field of the left edge, i.e. &,,Xi, 
S ,  and S,  (see figure 1) we find 

d:: = - [h'U( -L+ 00)- hU( -L-  a)], (3.15) 1 s; ( - L )  @'""dz-ls;(-L) 

where 82 stand for the outer limits to the right and to the left of the edge at x = - L. 
Near the right edge, we have, similarly, 

1 $20, d z - j - ( L )  +,ox dz = -[hCi(L+ a ) - h ' ( U ( L -  a ) ] .  (3.16) 

The derivation of (3.15) and (3.16) is very similar to the one encountered in our 
parallel analysis of a floating body in beam seas (Agnon & Mei 1985; see the first of 

S L ( L )  
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2wa \ 
h U ( - L -  cc,) = h R e 4 P  e-2iRt1 = -fi(O) (IA12--(B12) (xl = -Ll-0) ,  g 

2wa‘ 

g 
2wa’ 

g 
2wa 

h’U( -L+  m) = h’ Re @(2)  e-ZW = - --f;“o) (lD12-lE12) (XI = -I,, + 0), 

h’U(L-cc,) = h’ ReW3)e-2iR11 = - - - f~2(0)( lD12-JE/2)  (xl = L,-0), 

h[7(,5+ 06) = h ReOj(4) e-2iRti = - __ 8(0)ICl2 (xl = L,+O). 
g I 

Y .  Agnon and C. C. Mei 

1 (3.17) 

FIWRE 4. Rags of long waves over a ridge: ---, group-locked waves; - - - - -  , free waves. The 
direftions are dyjdx = I/C, yff the ridge and i ijCL on the ridge for group-locked waves; i I /  
( g h ) p  off the ridge and l / ( g h ) i  on the ridge for free waves. 



where all quantities in { } are evaluated a t  x, = L,. 

propagating modes. For example, we have 
Use has been made of the simple relations between t ,  and x1 derivatives of the 

a a a 
ax, at, ax, at, 
- = p- for$;b and$Fo, - = p’- for$K etc., 
a 

and similar relations for left-going waves with a change of sign. Matching the long- 
wave potentials across an edge through @lo (cf. (3.10)) we get 

In (3.18), the coefficients of ( x , k L , )  correspond to mass fluxes associated with the 
long waves. Matching the fluxes terms in (3.18) with the near-field flux 

and making use of (3.15) we get 

When (3.2), (3.3) and (3.8) are substituted into (3.19) we obtain a linear matrix 
equations for 9, H, X ,  and 2. 

[ = [i] (3.20) 

where the matrix N is given by 



(3.22) 

Equation (3.20) can be solved to yield a full solution for the long waves. 

becomes singular when its determinant vanishes, i.e. 
We now examine the physical implications of the solutions. The matrix N in (3.21) 

(ph + ip’h’)2 e4iQP’Li - (ph-ip’h’)z e-4iQP’L~ = Im [ ( p k +  ip’h’)2 e4iQP’Li] = 0, (3.23) 

which is the known eigenvalue condition for trapped modes on a rectangular shelf 
according to the linearized shallow-water wave theory. I n  particular, (3.23) may be 
solved to give the nth eigenfrequency 52, : 

(3.24) 

For collinear incident wavetrains, 1’ is determined from (2.14) and (2.15). For non- 
collinear trains one may prescribe the angular spread A ; v and ,u are then determined 
from (2.12) and (2.13). I n  either case /3 and p’ follow from (3.6) and the nth 
eigenfrequency 52, is then given by (3.24). For even (or odd) n, the free-surface profile 
associated with the trapped long wave Gl0 is symmetric (or antisymmetric) about 
the longitudinal axis (x = 0) of the shelf (see Mei 1983, p. 140). 

We note that the second and third columns of (3.21) are complex conjugates of 
each other. This means that 

X(252) = -#*(252). (3.25) 

Hence the free wave on the shelf is of the form 

1 R ~ [ X  e-2iQ(t,-px,-uy1) - #* e-ziQ(t~+8x1-u~1) 

= 1x1 sin (852/3’x, -arg A?) cos252(t, - vyl), (3.26) 

which is a wave standing in the x1 direction, and propagating in the y1 direction. 
The standing-wave amplitude X is found from (3.20) by matrix inversion 

M d  
[ (pk)’  + (p’h’)2] 4Q2 sin 4/3’L,(Q - a,) ’ - - M d  

Im [(ph + i/3’h’)2 e4iQrL1)] 4Q2 
H =  

(3.27) 
where 

1 a1 - e2iQ/Yt, 0 

0 a2 e-2iQ@’L, - 1  

2Qk,/3 a3 2i52h’/3’ eziQrL1 0 
(3.88) M d  = 

0 a4 -2iQh‘/3’ e~2iQP’Li 2Qhp 
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FIGURE 5 .  The frequency response, $(2Q) = 2Q1#lh/gaz, versus Q / w  for collinear waves, 
L/k = 10, E = 0.1, h’ /h  = 0.5, u h  = 1 and three angles of incidence : ( a )  normal incidence (0 = 0”) ; 
( b )  0 = 45’; and ( c )  0 = 75”. 

The free wave off the shelf is now propagating. Equations (3.20) and (3.21) are still 
valid if p is taken to be imaginary. 

Figure 5 shows the dependence of H = 20JHJh/ga2 ,  which is the normalized 
amplitude of the trapped long wave, on O/w, for collinear trains a t  various angles of 
incidence 8 = 8, = tan-l v/,u = tan-l y l a .  From (3.7) there are three regimes 
separated by the critical angles O1 and 8, corresponding respectively to p” = 0 and 
,P = 0, i.e. 

sin o1 = C,/(gh)t, sin o2 = C,/(gh’)t. (3.30) 

For O1 < 8, < B,, -p2 is negative and /3” is positive ; the free long waves are trapped 
on the shelf. Resonance occurs a t  frequencies given by (3.24) ; the spacing between 
them is simply x/(4p’Ll). For 8, < 8,, both -p2 and p’, are positive and the waves 
are propagating everywhere. No infinite resonance occurs, and the variation of the 
normalized H with respect to S2L is uneventful. Finally, for 8, > O,, both -p2 and 
p’, are negative; th t  free long waves are evanescent on and off the shelf, as can be 
inferred from (3.23) and (3.28). H decays exponentially as SZL increases. 

In  the case of non-collinear wavetrains the same three regimes exist and are 
determined by the signs of -/I2 and r2. These in turn are determined by the 
magnitude of v-l = C,  sec8, compared to (gh); and (gh’);. When 8, is close to 8 the 
resulting values are close to the results for collinear waves. When they differ, the 
qualitative behaviour is the same, and some quantitative variation occurs. Such 
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cases have been computed with results similar to those given in figure 4. We also note 
that the appearance of many zeros in figure 2 does not mean that the forcing of the 
free long wave8 vanishes. While they are oscillatory in EL, not all terms on the right 
of (3.1 a )  vanish, nor are they in phase with respect to kL. The numerical values are, 
of course, functions of the short-wave scattering, which depend on the details of the 
topography, such as kL, the shape of the shelf edges, etc. 

In  the neighbourhood of the resonant peaks, the theory in this section breaks 
down. One way to  achieve a uniformly valid theory is to  examine the evolution over 
a much longer timescale t ,  = e2t = O(1) .  Higher-order nonlinearity must then be 
invoked. In a related study of edge waves on a mild slope, Foda & Mei (1981) have 
derived a cubic Schrodinger equation for the resonated edge waves. Similar analysis 
would be dauntingly complex for the present problem. To avoid infinite resonance, 
one may alternatively examine incident wave packets of finite duration within the 
realm of t ,  = O( 1 )  ; the resonance peaks must then be finite. 

4. Long waves due to an incident wave packet 
4.1. Normal incidence 

In  the simplest case of normal incidence, trapping or resonance is not expected. 
Instead of the discrete-mode approach of $ 2 ,  we view the short waves as sinusoidal 
waves modulated slowly in some general manner. Equations (2.6)-(2.8) hold near 
each edge with the coefficients A-E being functions oft,, but the amplitudes D and 
E of waves propagating on the shelf must have different values a t  the two edges. 
In  particular A ,  B, D and E in (2.6) must be evaluated a t  x1 = -L , ,  hence 
A = d(-Ll ,  t l )  etc. On the other hand C, D and E in (2.7) must be evaluated a t  
x, = L,, hence C = C(L, , t l )  etc. Since D = D(t,-x,/C,) and E = E(t,+x,/C‘,) by the 
conservation of wave action. we have 

D(L,,t,) = D(-Ll,tl-22Ll/C,), E ( - L , , t , )  = E(Ll,tl+2L,/Cg). (4.1) 

With these relations and the prescribed A (  - L,,  t l )  we determine the short-wave 
amplitudes for each t , :  A ,  B,  D and E a t  x1 = L, and C, D and E at  x 1  = - L L .  
Subsequently. the locked long-waves are computed from these amplitudes through 
(3.1) and (3.3), and the Stokes’ drift terms are found from (3.17). The results are 
lengthy and not presented here. 

We now turn to the free long waves. In  principle the values of $& at  any point on 
the shelf can be calculated by the method of characteristics from the wave equations 
(3.5). However, much insight can be gained by a simpler calculation of the behaviour 
a t  the two edges only. 

Instead of the sinusoidal dependence in (3.3) and (3.8), we now have 

and 

and 

(4.2) 



Trapping  and resonance of long shelf tauties due to groups of short waocs 215 

3 

2 

1 

L, 
0 

- 1  

-2 

- 3  

FIGURE 6. The normalized transient long-wave response c,, = hc,,/a2, to normally incident waves, 
(a)  at the left edge and (6) at the right edge of the shelf, for h / h  = 0.5, L / h  = 10, vh = 1 ,  
sZ/ul= 1 .  Curve ( 1 )  the locked waves. (3 )  the free waves, and (3) the total slow wave. 
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With this proviso (3.9), (3.18) and (3.19) are still formally valid. Using (4.2) we 
replace all the .xl derivatives in (3.19c, d )  by t ,  derivatives with appropriate constant 
multipliers. Equations (3.19a-d) then form a set of four first-order different'ial 
equations for @fo, I);, q5fo and &',, which can be integrated numerically with respect 
t'o time from t ,  = 0. The free long waves $fo a t  - L, and L, are thus determined. 

In figure 6 ( a ) ,  we display the calculated long wave near the left edge. Note that 
the group-locked long wave which c,onsists of both incident and reflected waves is a 
set-down while the radiated free long wave is a set-up. The net displacement of the 
t'wo long waves is still a set-down. After Qt, = 6 reflection from the right edge returns 
to the left edge. The free long wave is now more dominant. The long wave a t  the right 
edge is shown in figure 6 ( b ) .  The locked and free long waves are opposite in sign. L '3' ince 
the free long waves arrive earlier than the locked long waves, the total long wave is 
at) first a set-up then a set-down. 

4.3. Oblique incideme and trapped uiaves 
For sufficiently oblique incidence, wave trapping occurs and $yo becomes 

evanescent off t>he shelf. We shall use Fourier transformation of the incident-wave 
envelope in conjunction with the modulational frequency response to determine the 
transient envelope. 

we may 
construct the transient, solution by the Fourier integral of the modulational 
frequency response. First, we define the Fourier integral representation of IAI2 by 

Because $Fat, depends linearly on the incident-wave intensity 

m 

= 1 d(242) e-iT(2R) Y A (252), (4.3) 
-m 

where 9, is the Fourier spectrum of IA)'. For illustration, let us consider a short- 
wave envelope which is itself a Gaussian wave packet with modulational frequency 

(4.4) 
a: A = A, R~ e-iD~-iuW 

where r is the phase function 

The Fourier spectrum is 
r = tl-,ulxl-~yl. 

d r  e2iRT)A)2 

with Q > 0 we have already determined in $3.3 the free long waves % and X defined 
in ( 3 . 8 ~ .  d ) .  We extend the definition of X(2.Q) to 52 < 0 using the fact that 

#(2sz) = X*(  -2l-2). X(252) = N*( -252) .  (4.8) 
which follows from ( 3 . 8 ~ .  d ) .  

is then constructed by Fourier superposition 
The transient response <:, which represents the right-going free wave on the shelf 
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where X = X(252) is related to d(252)  by (3.27) while d is given by (3.4) with 
d+A-* replaced by 9,. Since X has poles a t  Q n  the path of integration must be 
slightly above the real axis in the complex 252-plane. The other free wave {& can be 
represented similarly. 

Sufficient insight can bc gained by focusing attention on a point along the shelf 
axis. In the complex plane of 252 the function S(252)  has real poles which correspond 
to the trapped modes. The transient response will be close to resonance if the forcing 
frequency 52 is close to one of the eigenfrequencies 52,. Let us assume that the forcing 
frequency fz coincides with the lowest eigenfrequency, corresponding to n = 0 in 
(3.4) : 

1 - 
52 = 52 - ~ tan-, (phlp’h’).  

O - 2p’L, (4.10) 

In the complex plane of 252 the integration path is slightly above the real axis in 
order that H tends to zero as t, goes to - 00. Because of the Gaussian factors in (4.6) 
the integral in (4.9) derives most of its value when 

arfz= O(w) 4 52,. 

corresponding to the second and third terms in (4.6). Consider x, = y, = 0 only. 
Because of Hermitian symmetry of 9, and X in 52 we have 

where #olaz is the residue of 2 a t  the pole a t  52 = 52, and is easily found from 
(3.27) : 

So = MR-Do{[(ph)2+ (p’h’)2]2p’L1452i}-1. (4.12) 

Use has been made of the result 
mAi 

( - 2i52) Suvc~ ’ 

d ( 2 5 2 , )  = (4.13) 

The dependence of H, on physical parameters will be discussed later. 

1970). In  the complex plane 252, the phase function 
The integral (4.11) can be analysed by the method of steepest descent (Carrier 

(52 - r(252) = -2iQt,- 
W2 

(4.14) 

has a saddle point a t  252 = 352, - 2iw2 t ,  

which shifts downwards as t ,  increases. We transform the integration path to the 
path of steepest descent through the saddle point : 

+H( t , )  Re[ -2ni7e-2iaot1 4w 2o RS 1. (4.15) 

The last term, which includes the Heaviside step function HI, arises from the pole a t  
52,. By the following change of variable: 

g = 252 - 252, + 2izo2tl 
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the integral i n  (4.15) becomes 

Y .  Agnon and C. C.  i M e i  

(4.16) 

which has been evaluated by Carrier (1970) as 

2, sgn ( t l )  in e-w2tT [I - erfwltll]. (4.17) 

Equations (4.15) and (4.17) can now be combined to give finally 

inbaAt 
4w 

- 9 C ~ o ( O , O , t , )  “Re- 2, {sgn(t,)[1-erfwJt,J]-2W(tl)} e-2iRotl. (4.18) 

In  view of (3.25) the left-going component -gc&(O, 0, t l )  on the shelf is given simply 
by (4.18) with 2, replaced by -&$. 

The strength of the transient response (4.18) depends on the energy in the input 
packet via the packet length l / w ,  and on the residue 2,. The normalized forcing 

2, = 252, I 2, d I (h/g)l/az (4.19) 

and the normalized resonance frequency 

do = 52,(h/g)i (4.20) 

are plotted as functions of the envelope incidence angle 8, in figure 7 ( a )  for collinear 
waves and in figure 7 ( b )  for non-collinear waves with 8,-0 = 60”. The angular 
spread corresponding to  the latter case can be inferred from (2.13), where SZ is now 
equal to the resonance frequency 52, which also depends on 8, 8, and h’/h. As noted 
before, 52, (hence trapping and resonance) exists only in the range 8, < 8, < 8,, where 
8, and 8, are defined in (3.30). As can be seen in these figures the collinear and non- 
collinear cases are qualitatively similar. The range of trapping 8, - 8, is smaller for 
larger h’/h and also for larger 8,-8. From (4.10) we can verify that as 0,JB1,/3$O 
so that 52, 4 0, and as 8, t 8,, p’ 4 0 so that 52, t CO. From (4.12) we can also see that 
as 8,t 8,, 2, 1‘ co since p’ J. 0. As 8 4 81 we see by substituting 52 = 0 in (3.22) that 

a3 + h’%(’) - ha(’) ; a, + ha(,) - h’W3). (4.21) 

Letting p and 52, be small in (3.28) we find by using (4.21) that to the leading order 
in p’ and 52, 

M + 2i52, h’b’ (a, - a3) 
+ 2i52, h’P’[h(@(’) i- %(,) - h’(@(’) + %!(3))]. (4.22) 

It follows from (4.12) and (4.19) that  

(4.23) 

Because the Stokes’ drift terms do not depend on 52 and remain finite as 52 4 0, this 
forcing for the resonated shelf wave is finite a t  8, = B,, as shown in figure 7 (a,  b) .  The 
singular limit a t  ee = 6, corresponds to  an envelope caustic ; further refinement of the 
present theory is required but is not pursued here. 

Figure 8 ( a ,  b )  shows an example of <g(O,O, t,) due to the transient input of (4.4), 
for two different values of w. As can be seen there is a transition through which the 
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PTGITRR 7 The resnninre frennenrv 6- = 0 ( h l o d  nt whirh t h e  first nnle nrriirs 2nd the nnrmnliverl - - - - . . - - - - - - - - - _-__ - - _ _  - =---- - j  --u - - u , . " , ~ ,  -_ ..___ "__ -__-__-I- ~- - - - -_ -_- -__-  "__- 
residue of = 252,1X0dl ( h / g ) t / a 2 ,  the residue a t  52, v.s. 6, for L/h  = 10, ah = 4, and three 
depth ratios: h'/h = 0.5, 0.7, 0.9; (a) collinear incidence: 6, = 6;  ( b )  non-collinear incidence: 
6 = 6,-60". 

free long wave builds up before the arrival of the peak of the envelope. Afterwards 
the incident wave packet moves away along the positive y1 axis and leaves a steady 
'wake' of reverberation which is an oscillation at the resonance frequency. The 
parameter l / w  is proportional to the total duration of the incident wave packet. The 
amplitude of reverberation decreases for increasing w. If w is very small the realm of 
validity of the present theory will be exceeded. Higher-order effects must then be 
accounted for. 
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FIGURE 8. Transient response to an obliquely incident wave packet. The normalizedjncident short- 
wave amplitude a / h  (where EU is the physical amplitude) and the value of <:o = <:o(O,O,t,) 
2Qh/ga2 are plott,ed versus Qt,, Collinear incidence with 8, = 0 = Go, h ' / h  = 0.5, L / h  = 10, crh = 1. 
The computed Q, = 0.65 and X o h / a 2  = 0.17-0.12i. (a) ui = 0.1; (6) ui = 0.2. 

5. Concluding remarks 
I n  this paper a problem of nonlinear diffraction of slowly modulated short waves 

hy a wide ridge has been studied by combining the tools of matched asymptotics and 
multiple scales. Everywhere in the fluid there are two timescales: the short wave 
period and the long group period. I n  the near field of each edge there is only one 
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spatial scale, i.e. the short wavelength, and both propagating and evanescent modes 
are important. In  the far field away from the edges, there are two spatial scales, but 
only the propagating part of the short waves matters. Two kinds of long waves must 
be present : one is locked to the short-wave groups and one is propagating at the local 
speed of the shallow-water wave. When the angle of incidence is sufficiently oblique, 
the second long wave can be trapped on the ridge which then becomes a wave guide 
If the incident wave is a packet with a finite length in the direction of propagation, a 
persistent wake of reverberation can be resonated along the ridge. 

There are other situations where long-wave excitation can be of great practical 
interest. In  many small harbours the lowest natural modes have periods of 5-20 
minutes. I n  view of the analysis of this paper, these long-period harbour modes can 
be resonated by short wind waves nonlinearly, in addition to the linear resonance by 
tsunamis. This has indeed been reported in some harbours, but effective calculations 
still await further studies. 
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